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This is a theoretical and experimental study of the basic hydraulics of two flowing 
layers. Unlike single-layer flows, two-layer flows respond quite differently to bottom 
depth as opposed to width variations. Bottom-depth changes affect the lower layer 
directly and the upper layer only indirectly. Changes in width can affect both layers. 
In fact for flows through a contraction control two distinct flow configurations are 
possible; which one actually occurs depends on the requirements of matching a 
downstream flow. Two-layer flows can pass through internally critical conditions at 
other than the narrowest section. When the two layers are flowing in the same 
direction, the result is a strong coupling between the two layers in the neighbourhood 
of the control. For contractions a particularly simple flow then exists upstream in 
which there is no longer any significant interfacial dynamics; downstream in the 
divergent section the flow remains internally supercritical, causing one of the layers 
to be rapidly accelerated with a resulting instability at the interface. A brief 
discussion of internal hydraulic jumps based upon the energy equations as opposed 
to the more traditional momentum equations is included. Previous uniqueness 
problems are thereby avoided. 

1. Introduction 
A new treatment of the internal hydraulics of two-layer flows is presented here that 

allows simplification of the analysis of a wide range of practical and geophysical 
problems. The flows are parametrized in terms of the internal Froude numbers for 
each layer and possible flow solutions are shown as curves in the Proude-number 
plane. With this approach the conditions for critical flow, which define all of the 
essential characteristics of the internal hydraulics, take a particularly simple form. 
This then allows interpretation of solutions in such a way as to illustrate the location 
of controls, including virtual controls, of matching conditions and of multiple 
solutions. The use of a Froude-number parametrization also allows much simpler 
specification of the regularity equations from which the control conditions are readily 
identified. 

Solutions were calculated for two-layer flows through contractions and over sills. 
The results lead to the unexpected conclusion that, for a contraction, specification 
of the flow rates alone does not always lead to a single unique solution. In the general 
case, with control at the narrowest section of a contraction, there are two distinct 
solutions, specification of which is actually observed, determined by downstream 
matcbing requirements. Laboratory experiments of two-layer flows through con- 
tractions confirm the existence of these two solutions as predicted by theory. 

Finally, the theory is extended to provide a simple scheme for predicting the 
conjugate states of weak internal hydraulic jumps. 
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2. A brief history of internal hydraulics 
Although the internal hydraulics of a single layer, either beneath or above a 

stagnant or passive layer, is discussed in standard references (cf. Prandtll952 ; Turner 
1973, §3.2), the first study of a two-layer flow in which both layers interact and play 
a significant role in the establishment or control of the flow was by Stommel & Farmer 
(1953). An exchange flow with an internally critical condition at the mouth of an 
estuary was found to limit the amount of mixing that could occur in the estuary 
between fresh water and ocean water. Wood (1970) later studied the somewhat similar 
lock-exchange flow through a contraction which results from opening a lock gate 
between two fluids of different densities. The effect of friction on the motion of two 
layers was first considered by Schijf & Schonfeld (1953) starting with an assumed 
initial condition. 

A special two-layer flow which behaves as a composite flow was recognized by Wood 
(1968) in treating the problem of withdrawal of a stratified fluid through a horizontal 
contraction, which also controls the level of the free surface. The requirement that 
the flow start from a stagnant reservoir and accelerate through a critical state with 
respect to the free-surface velocity was observed to force the flow to be internally 
critical at a virtual control upstream in the contraction. The resulting flow belongs 
to the special class of steady stratified flows of Yih (1969). This work was extended 
by Wood & Lei (1972) to the flow of a layered fluid over a broad-crested contracted 
weir and by Lai & Wood (1975) t o  the withdrawal of two layers through separate 
valves, which are downstream of a contraction, for one specific reservoir condition. 
An analysis of boundary contractions as controls in two-layer flows was attempted 
by Mehrotra (19733) ; however, many of his conclusions, particularly regarding the 
equivalence of vertical and horizontal contractions and the position of the only 
control being at  the narrowest section, are in disagreement with the findings 
presented here. 

Long (1954, 1970, 1974) considered experimentally and analytically the blocking 
of a two-layer flow over a mountain ridge for initially uniform flow upstream and 
downstream. This problem was also considered numerically by Houghton & Isaacson 
(1970). More recently, Baines (1984) has presented a comprehensive treatment of 
these impulsively started flows. These problems are analysed in a fundamentally 
different way than the analysis to be presented here. Reservoir conditions, that is 
velocities with respect to the obstacle and interface depths, are imposed and solutions 
are computed with internal hydraulic jumps and/or rarefactions matching the flow 
in the neighbourhood of the obstacle with the reservoir state. Since these jumps may 
propagate, the volume flow rates in each layer are determined and are not free 
parameters. In the presentation here the volume rates are fixed and interface response 
and velocities are determined. 

Internal hydraulic jumps for two moving layers were first treated by Benton (1954) 
who recognized that the principles of momentum conservation and decrease of energy 
are together insufficient to specify downstream conditions, given a complete descrip- 
tion of the upstream flow. The additional requirement that no momentum be trans- 
ferred between the layers was added by Yih & Guha (1955). The question of 
determining which of up to four possible conjugate states actually occurs, from among 
those predicted by the conservation-of-momentum equations alone, has been treated 
by Hayakawa (1970), Mehrotra & Kelly (1973), and Mehrotra (1973~).  A simplified 
treatment of weak internal hydraulic jumps, using the much simpler conservation- 
of-energy equations to predict the conjugate state for an internal hydraulic jump, 
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is presented here. It is clear from this approach that the conjugate state is unique. 
Recent experimental work by Wood & Simpson (1984), Chu & Baddour (1984) and 
Lawrence (1985) together with earlier work of Wilkinson & Wood (1971) for a single 
entraining layer has indicated that internal jumps, and in particular the mixing 
regions associated with them, can take on a variety of forms. Unlike free-surface flows, 
internal flows can transfer both mass and momentum from adjacent layers by 
entrainment and waves and can thereby adjust to a range of possible downstream 
states. 

3. Steady-flow equations and controls 
In  this section we derive solutions and regularity equations for one- and two-layer 

hydraulics and discuss the result in terms of flows through channels of slowly varying 
breadth and depth. Although an infinite number of possible flows might exist for any 
given channel geometry, we will try to identify those that are in some sense 
asymmetric. This asymmetry is required if differing reservoir conditions upstream 
and downstream are to be linked by the flow. These asymmetrical flows are called 
‘controlled ’ because certain distinct regularity conditions must be satisfied for them 
to exist. As an example, for the familar single layer flowing over a sill, an asymmetric 
flow only exists if the Froude number of the flow is unity at the sill crest. For two-layer 
flows similar although more complicated conditions will apply. 

Figure 1 (a) shows a plan view for all flows and figures 1 (M) show side views of 
the three flow systems to be considered: (b) single-layer open-channel flow for 
comparison, and two-layer flows both with (c )  and without (d )  a free surface. Top 
and bottom variations are defined by hl ( z )  and ha@), or simply h(z)  for free-surface 
flows. The width of the flow at any section is b(z). These are the independent 
topographic variables. 

Subject to the assumptions of frictionless, uniform, one-dimensional hydrostatic 
flow, the steady momentum and continuity equations may be written in the general 
form : 

This is a quasi-linear differential equation relating derivatives of the dependent 
variables u, to the derivatives of the independent topographic variables f,. The 
coefficients of (1) for two layers with a free surface are: 

CU, = Of,. (1) 

f=[3, ?.=A, P 
Pa 

where u,, y,, p,, qt are respectively the layer velocity, thickness, density and volume 
flow rate. Subscript 1 will always refer to the upper layer and subscript 2 the lower 
layer. Specification of the coefficients and development of solutions for the cases of 
a single layer with a free surface and two-layer flow with a solid upper surface can 
be found in Appendix A. Appendix B contains a table of all symbols and definitions. 
Note that differentiation of the Bernoulli equations in the flow direction along with 
the continuity equations for each layer also gives (1). 

2-2 
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FIGURE 1.  (a) Plan view for all flows and side views for (b )  single-layer open-channel flow, 
(c) two-layer open-channel flow and (d) bounded two-layer flow. 

Since (1) is quasi-linear, we can try to solve for the dependent variables u, as 
functions of the independent topographic variablesf,. However, solutions will exist 
only if the det (C) + 0 or if in the neighbourhood of locations where det (C) = 0 certain 
regularity conditions are also satisfied. In fact, these regularity conditions will 
establish unique solutions; the locations where det (C) = 0 are traditionally called 
controls since they establish these unique flows. The regularity conditions are simply 
constraints on the flow, which are required since the magnitude of the interfacial or 
free-surface slope in the neighbourhood of a control is known to be finite. 

For single-layer flows det (C) is usually formulated in terms of the Froude number, 

p=f; 
gY 

with this definition, critical conditions (i.e. det (C)  = 0) occur wherever P = 1. 
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It is useful to define also a similar non-dimensional parameter for two-layer flows, 
which will equal one wherever the flow is critical. For two-layer flow with a free 
surface, the appropriate non-dimensional number is a composite F r d e  number Ce 
defined by 

where Ff = ui/g’yi are the internal Froude numbers of the individual layers, 
g’ = (1 - r )  g is the reduced gravitational acceleration, and r = p1/p2 .  

For two-layer flow beneath a bounded upper surface, the appropriate non- 
dimensional number is a purely internal composite Froude number @ defined by 

8 = PB,+F;-(l-T)FB,Pf,  (3) 

8 = r F t + F i .  (4) 

For external Froude numbers that are small and with small non-dimensional 
density differences (1 - r )  4 1, the composite Froude numbers defined by (3) and (4) 
can be simply written as 

clp = F : + F i .  

The characteristics of (1) are given by solutions to the eigenvalue problem 

det (C-A/) = 0, (6) 
where h are the characteristic velocities of long waves. Locations where the flow is 
critical [det (C) = 01 are simply positions along the flow where one of the characteristic 
velocities vanishes. For two layers with a free surface there are two sets of 
characteristic velocities, external characteristics A,, associated with the barotropic 
free-surface mode and internal characteristics Aint associated with a much slower 
baroclinic mode. Assuming (1 - r )  @ 1 and defining a convective velocity 

(cf. Schijf t Schonfeld 1953). 
Real internal characteristics only exist if 

(Long 1956). If the difference in velocities is such that (9) is not satisfied, the flow 
is unstable to long internal waves; the internal characteristic velocities given by ( 8 b )  
are then imaginary. In  fact, if (9) is not satisfied, for example as a result of initial 
conditions at the inlet to the two-layer flume described in $5,  the flow which results 
includes large-amplitude growing Kelvin-Helmholtz instabilities. The hydrostatic 
approximation implicit in the analysis here only includes infinitely long waves. The 
stability criteron for these is given by (9). The characteristic velocities for a single 
layer with a free surface and for the two layers with a solid upper surface are given 
in the Appendix (A2)-(A6). 

When ( l - r )  4 1 the so-called external, free-surface, or barotropic mode will 
propagate independently of any dynamics of the interface (compare ( 8 a )  with (A3)). 
From (8b) it  is clear that the internal or baroclinic wave speed depends in a 
symmetrical way on the depths and speeds of both layers and on the velocity 
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difference between the two layers. Relative to the convective velocity ucOn the 
internal and external waves travel at  very different speeds. 

Since (1) is quasi-linear, it may be solved for the dependent variables u, as functions 
of the independent variablesf,. This development was motivated by the similar 
treatment of compressible-flow problems in gasdynamics (cf. Liepmann BE Roshko 
1957, p. 52, equation 2.27 and the following discussion of the area-velocity equation). 
For two layers with a free surface the solution is 

Solutions for a single-layer flow and bounded two-layer flows are given in the 
Appendix (A7), (A8). At critical points, det (C)  = 0, and the denominators of (1Ou-d) 
vanish; solutions only remain well behaved at these critical points if the numerators 
also vanish. These regularity conditions will specify uniqueness of the flows and 
determine the control locations. 

First, the control of a single layer will be discussed as an introduction to the control 
of interfacial flows. If the bottom is everywhere level, the solution (A 7a,b)  is 

It is apparent that where the flow is critical, li"L = 1, the solution remains regular only 
if db/dx = 0. If only depth variations are considered, the same reasoning applies; 
critical flow can only occur a t  a crest or location where dh/dx = 0. These two cases 
are discussed in detail in standard hydraulics texts. 

However, the case for which both width and depth variations are encountered and 
the narrowest and highest points don't necessarily coincide gives an interesting new 
result. The following more complicated regularity condition must then be satisfied : 

1 db 1 dh 
b dx ydx 

-- - +--= 0. 

If db/dx= 0 and dh/dx = 0 coincide, critical flow can be established at this 
coincidence location. If, however, the highest and narrowest sections do not coincide, 
critical flow will occur somewhere in between, as seen by the regularity condition (12) ; 
the location of the control is not uniquely specified by the geometry alone (h(x), b(x)), 
but also depends upon the flow rate that, together with the geometry, defines the 
layer depth y at the control. Thus the flow rate q determines the location of the control 
within the specified geometry. 

The same effect, in which both geometry and flow rate together determine the 
control location, is also a characteristic of two-layer flows. Regularity conditions 
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similar to (12) can now be derived for a two-layer flow with a free upper surface by 
setting the composite Froude number G2 in (10) equal to unity : 

1 d h  - [ 1 - (1 +:) F ; ]  f $+ [ - F;1 - - = 0, 

-[ 1 -( 1 +:) F ; ]  f ;+ [I - F:] - 1 d h  - = 0, 

Y1 dx 

Y2 dx 

c2 = F;+J’;-( l -r)F?F; = 1, ( 1 3 4  
only two of the above three equations being independent. 

Various authors have derived similar regularity conditions in their treatments of 
specific two-layer flow problems. Wood (1968) considered the two-layer flow with a 
free surface through a single contraction and Wood & Lai (1972) considered a two-layer 
flow over a broad-crested weir. Wood (1968) found it necessary for an additional 
control to exist for a flow starting from a reservoir and flowing through a contraction. 
The narrowest section controlled the level and dynamics of the free surface. The 
interfacial dynamics were controlled not by a geometrically prescribed position (e.g. 
the narrowest section) but instead by the location where the Composite Froude 
number was equal to unity. At  this so-called ‘virtual control’ the regularity 
conditions established a unique solution. A virtual control is not limited to the 
problems considered by Wood and his collaborators, for which both the interfacial 
and free-surface dynamics are controlled by a single geometric control. It is 
encountered in all problems involving interfacial dynamics when the flow rates are 
sufficiently high that only internally supercritical conditions can occur at the normal 
control (dhldx or dB/dx = 0) and a transition occurs from sub- to supercritical 
conditions. Then the more complicated conditions of (13a-c) apply. 

If the internal Froude number of one of the layers is small (P,Z Q l), inspection of 
(10) reveals that the resulting flow of the layer with finite Froude number is governed 
by a pair of equations identical with those for a single layer, with the appropriate 
internal Froude number replacing the free-surface Froude number. If the bottom 
layer is the moving layer, which has a finite internal Froude number, it will respond 
to width and bottom-level variations just as an independent single layer would; it 
would be unaffected by variations in the level of the bounding upper surface. 
Similarly, if the upper layer is the moving layer, which has a finite internal Froude 
number, it  will respond only to width variations for flows bounded above by a free 
surface. If both internal Froude numbers have finite values, the flows are coupled. 

If both internal Froude numbers are high, F; and Fi B 1, the stability requirement 
(9) implies that 

This result can be used to rewrite the solutions for a two-layer flow with a free surface, 
as follows: 

u; x u; (14) 

1 aYr 1 3(Yl+Y2) 
Ys ax Y l + Y 2  ax . 
--- 
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The Froude number F is now just the external Froude number. At high internal 
Froude numbers, the two-layer flow behaves exactly as a single layer (compare (15u-c) 
with (A7a,b)). The internal dynamics are thus unimportant with regard to 
establishment of the free-surface level. 

If the non-dimensional-density difference is small, the external Froude number will 
be 0(1 - r )  for G2 = O(1). The free surface with then remain level to 0(1 - r ) .  The 
interfacial dynamics are dependent on the free-surface dynamics only to the extent 
of establishing the level of the free surface. Two-layer flows with a free surface and 
small non-dimensional-density difference behave exactly as bounded two-layer flows 
with the upper boundary level. 

Since the internal dynamics of a two-layer flow can be treated independently of 
the dynamics of the free surface, the discussion of the control of an internal flow is 
the same for flows with a free upper surface as for flows with a horizontal upper 
boundary. 

4. The Froude-number plane for two-layer flows 
We now discuss a new parametrization of the solutions applicable to two-layer 

flow. This approach differs from that previously used (see, for example, Long 1970) 
in which solutions are expressed in terms of layer depths or speeds, in that we now 
use positions in the Froude-number plane (figure 2) to define solutions in terms of 
the essential nonlinearity of the flow. Moreover the critical condition, 

c2 = F : + F i  = 1 (( l-T) 4 l ) ,  (16) 

collapses to a straight line, separating internally supercritical from internally 
subcritical flow. 

With this parametrization i t  is appropriate to specify the flow rate qi = uabyi for 
each layer. The flow rates qI, rather than the upstream interface position and layer 
speeds (see, for example, Baines 1984), are specified in the experiments discussed 
later, and this is often true of many practical applications such as river discharge 
into a stratified reservoir. However, i t  is a straightforward matter to transform the 
results into layer thicknesses and speeds, using the definition of qi and q : 

The solutions apply to two-layer flows beneath a free upper surface with the 
non-dimensional-density difference between the two layers assumed small ; they also 
apply to bounded flows without this assumption of small non-dimensional-density 
difference if, in all instances, the actual velocity of the upper layer u1 is replaced by 
&ul. For example, the Froude number of the upper layer would read rFt ,  for F:,  and 
the volume flow would read &ql for q1 if a two-layer flow beneath a rigid upper surface 
is to be treated. 

Using the continuity equation for each layer, and fixing the volume flow ratio qr, 
the loci of all possible Froude-number pairs for any volume flow rate, width and total 
depth of flow can be computed as follows. Define non-dimensional-volume flow 
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FIQURE 2. The Froude-number plane for two-layer flows. Internally critical flow is defined by 
the line G2 = B’? + F i  = 1. For the volume flow ratio, qr = 1, the loci of possible combinations of 
upper-layer internal Froude numbers F: and lower layer internal Froude numbers F: are shown 
for discrete values of the non-dimensional volume flow rate per unit width ql/b’( 1 -h’)i (labelled 
at 0.1, 0.2, 0.3, 0.4). The curves express solutions of the mass conservation equations in the 
Froude-number plane. 

where qz is the volume flow rate, g’ the reduced gravitational acceleration, bo any 
reference width, and the height of the free surface above an arbitrary 
reference. Also non-dimensional width, height, and depths can be defined by 

b’ = b/bo ,  (20) 

h’ = h/(Yl +YZ)O, (21) 

Yt’ = Yt/(Yl +YZ)O. (22) 
The continuity equations can then be rewritten since qi are fixed and do not vary 
along the channel: 
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and the equation for a level free surface, 

becomes 

where qr = q1/q2 is the ratio of flow rates in each layer. 
Equation (25) defines the possible Froude-number pairs for any given qr and 

[q;/b’(l -h’)i]. This is the only family of curves presented in figure 2 (for qr = 1). AS 
the interface between the two layers moves up and down, the possible Froude-number 
pairs are defined by each locus if all the other parameters are fixed. For flows through 
a contraction, total-depth variations can be ignored if the external Froude number 
is small. For this flow the non-dimensional height h’ may be taken to be zero above 
some reference. The parameterization for contractions is then simply the non- 
dimensional flow rate per unit width (qi /b’) .  For flows over a sill the width remains 
constant and b’, the non-dimensional width, will be chosen to be unity. These sill flows 
are expressed in terms of the parameter [qi/(l -h’)f] .  

The solution plane of figure 2 provides a background grid for all the solutions for 
qr = 1. With q1 and q2 fixed, qr and the parameter qi / [b’ (  1 - h’)f]  are known at any 
position along the flow. In  the Froude-number plane solutions of the continuity 
equation, shown in figure 2 for qr = 1, will specify a locus of possible Froude-number 
pairs. As either the width or bottom changes, q;/[b’( 1 - h’)t] changes and the solutions 
to be presented will connect loci of possible Froude-number pairs. Contractions and 
sills are considered separately. The combined solutions of the energy and continuity 
equations will never explicitly involve the direction of the flow of either layer. The 
solutions, when they exist, are therefore valid for exchange flows as well as for flows 
in the same direction. 

5. Two-layer flows through a contraction 
For flows through a contraction, both the bottom and top bounding surfaces remain 

horizontal and the flow encounters only width variations. The Bernoulli or energy 
equations for the two layers are: 

H1= tPl@+P19(Yl+Y2)+P; 

H2 = tP2 % + P19Y1+ P2 9Y2 + P ; (27 1 
where p ,  the pressure at  the upper surface, is usually taken by definition to be zero 
for flows with a free upper surface. 

Subtraction of one of these equations from the other removes the dominant effect 
of hydrostatic pressures not associated with the internal dynamics. In the absence 
of hydraulic jumps the resulting energy difference is a conservative quantity, just 
as the Bernoulli constant or total head is conservative for single-layer flows. In 
non-dimensional form this energy difference is : 

For (1 - r )  Q 1, (18) and (29) can be combined : 



Hydraulics of two #owing layers with different densities 37 

2.0 

1 .s 

F: 1.0 

0.5 

0 0.5 1 .o I .5 2.0 

F: 

FIGURE 3. Solutions to the Bernoulli equations (the dark lines) in the Froude-number plane for 
(a) qr = 1 and (b)  0.5. Each solution curve is labelled with its non-dimensional reservoir height for 
the lower layer Yi. These solutions are superimposed on the maas-conservation loci (the light lines) 
also shown in figure 2 for qr = 1.  Non-dimensional volume flow rates q;/b’ are labelled at 0.2, 0.3 
and 0.4 on these loci. 

For small internal Froude numbers (30) becomes 

H2 - HI =-- y 2  - Y;, 
d P 2  (Y1+ Y z )  Y1+ Y2 

where Y2 is the depth of the bottom layer at a reservoir. 
Figure 3 (a, b) shows solution curves for flows through a contraction for the volume 

flow ratios qr = 1 and 0.5. The solutions of the energy equation are shown as heavy 
lines in the figure, overlying the loci of constant non-dimensional flow rates (shown 
in figure 2 for qr = 1). Additional solutions may be found in Armi (1975). The solutions 
for flows through a contraction are symmetric with respect to each of the two layers. 
Therefore, solutions for which the volume-flow ratio has a reciprocal value (qr = 2) 
to that shown in figure 3 (b) (qr = 0.5) can be found by merely interchanging the roles 
of the two layers. Each solution curve is labelled with the value of the non-dimensional 
reservoir interface height Y;. 
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FIQURE 3 ( b ) .  For caption see preceding page. 

If both internal Froude numbers are specified at the same location, such as a 
control, this specification uniquely determines the flow at all points along the solution 
curve. In this way the control fully determines the flow. 

It is apparent from figures 2 and 3 ( a )  that, for volume flow rates qilb’ < 0.25, each 
flow-rate locus intersects the critical condition G2 = 1 twice. Therefore there are two 
possible controlled solutions through a contraction for each choice of flow rate. Of 
course there are an infinite number of non-unique subcritical solutions satisfying the 
flow rate, but these are not controlled by the contraction. This result can be 
generalized to arbitrary volume-flow ratios to give the maximum volume flow rate 
per unit width for which a critical flow can occur: 

I 

= q; l [ l+q; : ] -* .  

If q;/b’ exceeds the value given by (31), there are no longer any intersections 
between the critical-flow line and the line of possible internal-Froude-number pairs 
for this value of qi /b’ .  All possible internal-Froude-number pairs are internally 
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supercritical at  this section. Control must then occur upstream at a wider section of 
the contraction: for qr = 1 this occurs where qi/b' = 0.25. The control is now at a 
virtual control. 

For a two-layer flow through a contraction the regularity conditions (13 u-c) 
with dhldx = 0 reduce to 

1 db 

[ 1 - ( 1 + ~ ) F : ] ~ ~ =  1 db 0, 

G2= F : + F i - ( l - r ) F t F i  = 1 ;  (324 

only two of the above three equations being independent. These regularity conditions 
can always be satisfied at the narrowest section where dbldx = 0, if P = 1 at this 
narrowest section. 

For the virtually controlled solution, control occurs at  a section where db/dx =I= 0. 
With db/dx 9 0 the regularity conditions of (32a-c) can be solved to establish that, 
at  the virtual control, 

If i t  is now assumed that ( 1  - r )  4 1 ,  (33) reduces to 

and (35) 

At the virtual control (35) with the critical condition gives the internal Froude 
numbers as 

and the velocity of either layer as 

(36) F f  = (1+qr)-', F i  = q,(l+q,)-' 

The associated non-dimensional volume flow rate per unit width is given by 
I + = d(l +q2)-2. 

b 

This value is always bounded by that given in (31) .  The values are equal only when 
qr = 1 (refer to figure 3(a, b)). 

One virtually controlled solution can be identified in figure 3 (a, b) as the straight 
line (q,P: = Pi), which satisfies (35) everywhere. Wood (1968) found these solutions 
for the case of a single contraction with the narrowest section controlling the free 
surface and with a virtual control establishing the internal dynamics. For this solution 
interfacial dynamics is absent. It is the only solution that accelerates both layers 
equally from a reservoir to an internally supercritical state. 

The self-similar solution above is intersected at the virtual control, in figure 3 (a, b), 
by a second solution. For flows in opposite directions this solution connects one 
well-mixed reservoir to another well-mixed reservoir through a contraction. The 
internal Froude number of the upper layer is high, and of the lower layer is low in 
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the one reservoir, and the reverse situation occurs in the other reservoir. This is the 
solution found by Wood (1970) in investigating the lock-exchange flow for two flows 
in opposite directions. 

6. Experiments 
The solutions generated and discussed in the previous section have been exhibited 

in the laboratory. However, we have limited the treatment to flows for which the 
interface remains stable, particularly in the neighbourhood of the control or virtual 
control. Our primary interest is in controlled flows and certain phenomena are 
ignored, for example supercritical unstable jets. 

For two-layer flows through a contraction it was found that two distinct flow 
configurations are possible. Flows with internally critical conditions at the narrowest 
section will be discussed first and then the flows with a virtual control, or critical flow 
at a section upstream of the narrowest section, are discussed. 

The laboratory flume was 5.1 cm (2 in.) wide with transparent plastic walls, as 
shown in the photographs of figure 4 ( a d )  (Plate 1). The total flume length was 2 m. 
There was a sharp-crested overflow weir at the downstream end with which the 
free-surface level was controlled. Since the external Froude number was always very 
low, except at the weir itself, the free surface remained level. The inlet sections were 
separated by a splitter until beyond the end of a high-pressure-loss region. This was 
made by packing stainless-steel wool between sections of aluminium honeycomb. The 
purpose of these high pressure losses at the entrance was to make the flow uniform 
in each layer. Density differences between the two layers were produced by adding 
salt to the lower layer in a large mixing tank. The lower layer was dyed blue for 
visualization in the photographs and to  facilitate measurement of the interface 
position ( f 1 mm). Densities were measured using a hydrometer, the accuracy of the 
density difference between the layers was 4 %. For each of the experiments, the 
volume flow rates of the layers were fixed.:These flow rates were measured with 
calibrated flow meters to  + 2 %  throughout the range of flow rates studied 
(30-150 cm3/s). Although the experiments were conducted for a number of flow rates, 
they were grouped in families characterized by the flow ratio qr being fixed. 

A contraction was formed in the experimental flume by clamping thin plastic sheets 
against the inner walls. The start of the convergent section was always located a t  
18 cm (7 in.), the narrowest section of width 2.27 cm a t  46 cm (18 in.), and the end 
to the divergence section at 74 cm (29 in.). Measurements were made a t  these loca- 
tions, labelled l ,  2, and 3 respectively, and can all be identified in the photographs by 
the presence of the thin transparent measuring rules (figure 4a-d). When an inverted 
bump or weir was inserted from above i t  was 173 cm (68 in.) downstream of the 
entrance, as illustrated in figure 4 (b). 

The combined errors in measurement of the internal Froude numbers Ff were 
between f 12 yo and & 40 yo, depending on the depth of the flow. A typical depth of 
40 mm resulted in an  error of approximately f 15 yo. Data are also presented using the 
non-dimensional depth y;, the accuracy of which is kO.01; the non-dimensional 
volume flow rate q; is accurate to f 5 yo. 

The effects of a non-uniform flow are small and can be evaluated by considering 
the errors caused by assuming the energy-distribution coefficient a = 1 (Chow 1959, 
p. 28). The definition of the Froude numbers should include this energy-distribution 
coefficient, e.g. 
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FIQURE 5. Two distinct flows through a contraction with control at the narrowest section of the 
contraction. With the exception of the imposed downstream condition, all experimental parameters 
were identical. 0, free overflow downstream ;w, combination inverted bump and the free overflow 
downstream. 

For the worst case of a fully developed flow a = 1.06 for typical Reynolds numbers 
associated with the experimental flume used here. A more significant source of error 
is the failure of the hydrostatic assumption itself. The slope of the interface in 
figure 4 (c ,d) ,  although slight, was not always insignificant in the neighbourhood 
of the control section. 

With control and critical j b w  at the narrowest section examples of the two possible 
flow configurations can be seen in figure 4(c ,d) .  For each of the configurations the 
volume flow rates were exactly the same, only the downstream conditions were varied. 
In figure 5 the locus of possible internal-Froude-number pairs associated with the 
non-dimensional volume flow rate per unit width at the narrowest section, 
p;/b’ = 0.23, has two intersections with the line of critical flow, c2 = F:+FX = 1. 
These two intersections are indicated by the experimental internal Froude numbers 
measured at  the narrowest section of the contraction. Flows which accelerated the 
lower layer were achieved with the configuration photographed in figure 4 (b, c ) ,  the 
combination overflow weir, which controlled the level of the free surface, and the 
inverted bump, which controlled the interface downstream of the contraction. Flows 
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which accelerated the upper layer were achieved with the overflow weir alone 
downstream, figure 4 ( d ) .  The experiments therefore confirm the existence of two 
solutions as predicted in our Froude-number-plane analysis. 

With the inverted bump inserted downstream in the flume as shown in figure 4 ( b ) ,  
the flow went through the contraction as illustrated in figure 4(c) (refer also to 
figure 5) .  The lower layer was accelerated beginning at  location 1 from subcritical 
conditions upstream through critical flow at the narrowest section, location 2, to 
supercritical conditions downstream. An internal hydraulic jump extends into the 
downstream end of the contraction, near location 3 ; here the supercritical flow leaving 
the contraction is conjugate to the subcritical flow upstream of the inverted bump. 

The transition from the flow with the inverted bump inserted to the flow 
configuration with only the free overflow downstream can be seen in figure 4 ( e ,  f )  
(Plate 2). An internal bore, which moves upstream immediately after removal of the 
inverted bump, is seen in figure 4(e). After its passage there is some sloshing in 
the flume followed by a gradual filling in of the bottom-layer fluid. This continues 
until the interface rises to the level shown in figure 4(d )  and the new configuration, 
which accelerates the upper layer through the contraction, is established. 

For the configuration figure 4 (d )  (refer also to figure 5 )  there is only a free overflow 
downstream. As the flow proceeds through the contraction, the upper layer is 
accelerated and conditions are subcritical at  location 1, critical at the narrowest 
section, location 2, and supercritical downstream. Beginning at location 3, at the end 
of the divergent section of the contraction, there is a region characterized by large 
interfacial waves, shown in figure 4 (9) (Plate 2) where the flow decelerates. 

Which, if either, of the two flows above is realized will depend on the conditions 
downstream of the contraction and the requirement that it be possible to match this 
downstream state. 

If the reservoir height of the interface Yi due to the downstream control and 
frictional effects, is between the two values of Y; of the two distinct solutions with 
critical flow at the narrowest section (refer to figures 3a and 5 ) ,  then no possible jumps 
or shear regions can connect either of these solutions with the downstream state. The 
contraction will be flooded and can no longer act as a control. The reservoir interface 
height and hence the total solution through the contraction is determined by 
conditions downstream of the contraction. 

If the reservoir height of the interface Y;,  due to the downstream control and 
frictional effects, is less than the value of Yi associated with the solution for which 
the lower layer is the faster layer, then this is the solution which must occur in the 
convergent section of the contraction. Downstream of the narrowest section the value 
of Y;, established at the narrowest control section of the contraction, will be gradually 
reduced by interfacial shear until the flow is conjugate to the conditions upstream 
of the downstream control and an internal hydraulic jump matches the two controls. 
If the value of Y; computed at  the narrowest section of the contraction is only slightly 
less than Y; established by the contraction, the internal hydraulic jump will occur 
close to the narrowest section of the contraction. The computed value of Yi at the 
narrowest section of the contraction, but due to the downstream control, may be so 
much less than Y; established in the contraction that the shear region never reduces 
the value of YL established by the contraction to a state conjugate to that computed 
at the downstream control. The flow will then be internally supercritical everywhere 
downstream of the narrowest section of the contraction and the ' downstream control ' 
is no longer an interfacial control. 

If the reservoir height of the interface Yi,  due to the downstream control and 
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FIQURE 7. Two distinct two-layer flows through a contraction with a virtual control upstream of 
the narrowest section. With the exception of the imposed downstream condition, all experimental 
parameters were identical. 0, free overflow downstream ;u, combination inverted bump and the 
free overflow downstream. 

frictional effects, is greater than the value of Y; associated with the solution for which 
the upper layer is the faster layer, then this is the solution which must occur in the 
convergent section of the contraction. Downstream the matching occurs exactly as 
described above when the lower layer was the faster-moving layer, except that  the 
effect of interfacial shear and internal hydraulic jumps will be t o  increase the value 
of Y; associated with the solution a t  the narrowest section. 

An example of a flow with a virtual control and criticalflow upstream of the narrowest 
section is shown in figure 6 (Plate 2). By increasing the volume flow rate per unit width 
qi/b’ the two distinct solutions with critical flow at the narrowest section merge to 
the no-shear virtually controlled solution, characterized by a level interface upstream 
of the narrowest section. No internally critical solutions existed a t  the narrowest 
section, volume flow rates per unit width at the narrowest section, qi/b‘ = 0.36, are 
greater than given by (31). For a volume-flow ratio of unity, qr = 1, the volume flow 
per unit width needs to be such that qL/b’ > 0.25, as is seen in figure 7 ,  for a virtually 
controlled flow. 
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FIGURE 8. Experimental internal Froude numbers at the narrowest section of a contraction for 
two-layer flows with (a) qr = 1 and (b) 0.5. The internal-Froude-number pairs are represented in the 
solution plane; each experimental pair is labelled with the non-dimensional volume flow rate per 
unit width q;/b’ for comparison with theoretical values labelled at 0.1, 0.2, 0.3, 0.4. Underlined 
values correspond to  experimental conditions with an inserted inverted weir downstream ; non- 
underlined values correspond t o  experimental conditions with the overflow weir alone downstream. 

Downstream of the narrowest section the flows do not return to  the subcritical 
values reached a t  the corresponding width upstream, in contrast to the conclusions 
of Lai & Wood (1975). The flows diverge along either of the two supercritical paths 
indicated in figure 7. Which path is taken depends again on matching the downstream 
state. 

There is mixing a t  the interface, visible beginning in the divergent section of the 
contraction, typical of all the flows which were supercritical at the narrowest section. 
The divergent section of the contraction causes a rapid increase in the interfacial shear 
from the no-shear flow upstream. In contrast, the flow depicted in figure 4(c,  d )  is 
accelerated gradually over the length of the contraction and the interfacial Richardson 
number is never low enough for mixing to  occur. For the flow depicted in figure 6 
the acceleration is rapid, resulting in a large interfacial velocity gradient, and, 
correspondingly, a low interfacial Richardson number. 
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FIGURE 8(b) .  For caption see facing page. 
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Qwcntitative results for these experiments can be displayed in the Froude-number 
plane first presented in $4. All experimental Froude numbers obtained at the 
narrowest section of the contraction are shown in figure 8(a,  b )  for flow rates with 
control at the narrowest section, and for higher flow rates with supercritical composite 
Froude numbers at the narrowest section and a virtual control upstream in the 
contraction section. Each experimental pair is labelled with the non-dimensional 
volume flow rate per unit width q;/b‘ for comparison with values indicated along the 
loci. Underlined values correspond to experimental flows with the inserted inverted 
weir downstream ; non-underlined values correspond to experimental flows with the 
overflow weir downstream. The deviation of the experimental internal Froude 
numbers from theoretical values is in part due to the accumulated errors in the 
internal Froude numbers of approximately 15 %. The systematic deviation from 
the predicted values is due to ignoring curvature effects in the neighbourhood of the 
narrowest section. These systematic deviations are most severe for low values of the 
volume flow rates. 

Figure 9 (a, b)  show non-dimensional interface heights above the bottom y ;  at the 
narrowest section, as a function of the non-dimensional volume flow rate qilb’ for 
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FIQURE 9. Non-dimensional interface height above bottom yi, at the narrowest section, as afunction 
of non-dimensional volume flow rate per unit width q;/b' for (a) qr = 1 and ( b )  0.5. The solid 
theoretical double-valued curve represents internally critical flow. The dashed lines represent 
theoretical heights assuming only one of the layers is moving and the other is passive. Symbols are 
as follows: A, measured at  narrowest section of contraction, downstream condition - overflow 
weir; V, measured at narrowest section of contraction, downstream condition - inverted sill; 
0, measured in level section upstream of the overflow weir. 

qr = 1 and 0.5. Systematic deviation of the experimental results is again due to  the 
neglect of curvature effects in the neighbourhood of the narrowest section. The solid 
double-valued curve represents internally critical flow. The dashed lines represent 
interface height computed assuming only one of the layers to be moving and the other 
passive. The details are as follows: the critical condition for two-layer flows can be 
transformed to  an equation relating the non-dimensional depths and volume flow 
rates by use of the level-free-surface relation, 

y;+y; = 1 ;  

the resulting equation is, with (23), 
I 

(41) 
412 - '-3 -1 

If only one of the layers is assumed active and the internal Froude number of the 
assumed passive layer is small, critical flow is given simply by F: = 1 and 

= (qi/b')i .  (42 I 

b'- [n:(l-Y;)-3++y, 1 *. 
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FIQURE 10. Non-dimensional reservoir interface height Y;  as a function of non-dimensional volume 
flow rate per unit width a t  q;/b' at the narrowest section for (a) qr = 1 and (b) 0.5. Experimental 
heights are taken from the 5.08 cm section upstream at x = 18 cm. The solid branched line 
represents theoretical heights from figure 3 (a )  using the full two-layer solutions. The dashed lines 
represent theoretical heights assuming only one of the layers is moving and the other is passive. 
A, downstream condition - overflow weir; V, downstream condition - inverted sill. 

The upstream-reservoir thickness of the active layer can be obtained from the energy 
equation (28) and is simply 

(43) Y; = gy;, 

where yi is the critical depth given by (42). 
In  figure lO(a), (b) the non-dimensional reservoir interface height Yi is shown as 

a function of the non-dimensional volume flow rate per unit width qi/b' a t  the 
narrowest section for qr = 1 and 0.5. The experimental heights are taken from the 
5.08 cm section upstream at z = 18 cm. The observed values of Yj are systematically 
larger than predicted, presumably owing to ignored frictional effects upstream of the 
narrowest section. The solid branched line represents theoretical reservoir heights 
taken from figure 3 (a) using the full two-layer solutions. The dashed lines represent 
computed heights, assuming only one of the layers to be moving and the other 
passive. 

When the internal Froude number of one of the layers is small the interface position 
is dominated by the dynamics of the other layer. The full two-layer experimental 
results shown in figure 9(a, b) and 10(a, b) are well predicted by a single-active-layer 
model until k: 70% of the maximum non-dimensional volume flow rate for which 
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FIGURE 11. Solution curves for two-layer flows over a sill (the dark lines) for two different volume 
flow ratios (u) qr = 1 and (b) 0.5. Each solution curve is labelled with its non-dimensional reservoir 
depth of the interface, Yiqi-5. These solutions are superimposed on the mass conservation loci (the 
light lines) labelled with values of the non-dimensional parameter q‘( 1 -h’)i. Internally critical flow 
is defined by the line G2 = FT+ F:  = 1. 

control can still exist at the narrowest section. This is the value of qi/b’ at which the 
two distinct interface positions, either at the narrowest section (figure 9a, b) or the 
reservoir (figure 10a, b), merge to a single virtually controlled value. 

7. Flows over a sill 
In considering flows over a sill or bump the assumption is made here that the width 

is constant. The Bernoulli equations for the two layers, including variations in the 
bottom height h, are 

4 = aPlU~+PlS(Y1+Yz+h)+P, (44) 

H2 = aP2 4 +P1 SY1 +PZS(Y2 +4  +P. (45) 

In order again to remove the dominant effects of the hydrostatic pressure not 
associated with the density difference between the two layers, the Bernoulli equations 
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FIGUKE 11 (b).  For caption see facing page. 
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are subtracted one from the other. In non-dimensional form the energy difference 
is given by 

With a small non-dimensional-density difference, the level-free-surface condition (24) 
can be used to write: 

Defining 

where Yi is a non-dimensional depth of the top layer in a reservoir where both F: 
and F i  approach zero, equation (47) with (25) can be solved giving 

(49) Fi  = q r [ 2 F ~ i  + PI$ - 2 Y;  qi-a]r. 

Solution curves of F i  versus F ;  are shown in figure 11 (a,  b)  for different volume-flow 
ratios qr. Each solution is labelled with the value of ( Yi qi-5). 
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Inspection of the solutions of (10) and (A8) with db/dx = 0 reveals that they are 
symmetric. Flows beneath an inverted weir with a level bottom can therefore be 
treated by interchanging the roles of the two layers. 

Changes in bottom and top bounding surfaces are felt directly only by the bottom 
and top layers, respectively. This is unlike a contraction, which contacts both layers. 
Contractions and bounding-surface variations are not equivalent (see (1Ou-d) and 
(A 8a-d) in contrast with the conclusions of Mehrotra (1973b). 

As the flow moves over a sill, h’ increases and hence the parameter qi/(l -h’); is 
also increasing. At the crest the parameter is a maximum. The solution curves, shown 
in figure 11 (a ,b) ,  connect possible internal-Froude-number pairs for different 
bottom heights or values of the parameter q; / (  1 - h’)f. 

Flows which are initially subcritical can only have the bottom layer accelerated 
during flow over a sill. Critical flow can be seen from the solution curves to  occur only 
a t  the highest spot on the sill or largest value of the parameter a ; / (  1 - h’);. For flows 
from a subcritical to  supercritical state over a sill the internal Froude number of the 
bottom layer FZ increases continuously while the upper-layer internal Froude number 
F ;  decreases continuously. 

If the value of the parameter q; / (  1 - h’); is sufficiently large, representing either 
high flow rates or high bumps, then the flow must be everywhere internally 
supercritical. The limiting value is given by 

Inspection of the solution curves of figure 11 (a ,  b) shows that if the parameter 
&/( 1 - h’); is everywhere increasing, representing flow over an  overflow weir, there 
are no solutions which connect a subcritical flow with a flow for which F ;  is greater 
than one. Upstream of an overflow, which controls the free surface, and downstream 
of any other internal control, the flow must be internally a t  least critical. 

For two-layer flows a t  constant width dbldx = 0 the regularity conditions 

(514 
reduce to 

1 dh p - - = o  
2 Y 1 d X  

1 dh 
[l-P3 -- = 0, 

Yz dx 

only two of the above three equations being independent. The regularity conditions 
above imply the following unique results for two-layer flows over an overflow weir 
that  controls the level of the free surface. The free surface will be controlled a t  the 
crest where G2 = 1 ; a t  the location of the control of the interface upstream of the 
crest, the regularity conditions with dh/dx =k 0 can be satisfied only if 

F ;  = 1 ,  F i  = 0. (52) 

This condition can only be reached in a deep reservoir. The deep-reservoir condition 
for flow over an overflow weir that controls the free surface is thus that the upper 
layer is internally critical and the lower layer has zero velocity. If the upstream 
reservoir is not deep, then critical conditions will be reached in the deepest section 
where dhldx = 0. 

The above results indicate that, for a two-layer flow over an overflow that controls 
the free surface level, conditions upstream must be such that the flow is a t  last 
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internally critical, G2 2 1. The condition G2 = 1 at the downstream end of the 
deepest-level section can be used as the downstream condition for the computation 
of a two-layer backwater curve using the equations of Schijf k SchGnfeld (1953) if 
the interfacial, bottom and surface stresses are known. (The surface stress can usually 
be ignored.) 

Since the internal dynamics of a two-layer flow can be treated independently of the 
dynamics of the free surface, the discussion of the control of an internal flow is the 
same for flows with a free upper surface and with a level upper surface. If the bounding 
upper surface is not horizontal, as might occur in a stratified-flow wind tunnel or 
withdrawal from a two-layer flow at some depth below the free surface, then the 
regularity conditions will contain the effects of variation of the upper bounding 
surface. Setting CZ = 1 in (A 8) gives the regularity conditions for a two-layer 
bounded flow as follows: 

CZ = r F t + F i  = 1. (53 b)  

If no width variations are present, and both the bounding sudaces are not level (the 
case where the upper surface was level was just discussed in the treatment of 
regularity conditions for a two-layer flow over an overflow weir), a virtual control 
can satisfy the regularity conditions at a location other than the shortest section 
where dh,/dx = dh2/dz = 0. The necessary conditions will then be 

If both the width and depth variations are included the more complicated regularity 
conditions given by (53a) need to be satisfied when the flow is forced to be internally 
critical at  some location other than the shortest, more-contracted section. 

8. Weak internal hydraulic jumps 
For single-layer flows, the matching of the supercritical flow downstream of one 

control with the upstream subcritical flow of the next control is accomplished with 
a hydraulic jump. For a two-layer flow this matching may also take place with an 
internal hydraulic jump if conditions are such that two conjugate states can exist. 
The classical internal hydraulic jump was modelled by Yih k Guha (1955), Hayakawa 
(1970), Mehrotra & Kelly (1973), and Mehrotra (1973a), after the free-surface 
hydraulic jump. The momentum flux of each layer is usually assumed to be conserved, 
that is no transfer of momentum from one layer to the other is assumed to occur. 
Recent experimental work by Wood & Simpson (1984), Chu & Baddour (1984) and 
Lawrence (1985) together with earlier work of Wilkinson k Wood (1971) has shown 
that internal jumps and the mixing regions associated with them take on a variety 
of forms owing to entrainment between the layers and radiation away from the jump 
region by internal waves. However, for weak internal hydraulic jumps these effects 
can often be ignored and a somewhat simplified treatment of these weak jumps may 
be made using solutions to the energy equations displayed in figures 3 (a) and (b) 
rather than by the previously cited more complicated treatments involving the 
momentum equations. The validity of this approach will be limited to weak jumps 
with no entrainment between the layers. 



52 L. Armi 

The energy change AH in a weak single-layer hydraulic jump can be shown, with 
the use of the hydraulic-jump conditions, to be well approximated by 

AH 
- = & ( 1 - ~ ; ) 3 ,  SY c 

(55) 

where yo and Fi refer to upstream values of the depth and Froude number. Since 
the critical depth is two-thirds of the reservoir depth, the change in the reservoir depth 

(56) 
is given approximately by AY 

- x &(1 -F33.  
Y 

For two-layer internal hydraulic jumps a similar relationship also applies for weak 
jumps, i.e. 

= h(1 - ~ 3 3 ,  (57) 
yi 

where CZ, is the upstream composite internal Froude number. The change in reservoir 
depth is negative, as it is for the single-layer hydraulic jump, and is always with 
respect to the reservoir depth of the faster-moving layer upstream of the internal 
hydraulic jump. A change in the upper-layer reservoir depth represents an internal 
hydraulic drop if the upper layer is the faster-moving layer upstream. If the upstream 
composite internal Froude number has the value Gi = 1.5, use of (56) shows that 

It is therefore appropriate to use conservation of energy to predict the downstream 
state given the upstream state for weak jumps with Gi < 1.5. If CZ, > 1.5, (57) can 
be used in conjunction with the labelled reservoir depths to predict the downstream 
state. For high-upstream composite internal numbers the approach suggested here 
can only give qualitative results since we ignore effects of entrainment. 

To find the conjugate state for a weak internal hydraulic jump or drop with the 
solutions in figures 3 (a, b) merely follow the line of constant total depth, for which 
the parameter q;/b’ is fixed, from the value at the upstream state G2 > 1 through 
the critical flow line until the solution curve is crossed again in the subcritical region. 
If > 1.5 the same procedure is used but the state downstream is not determined 
by completely conserving the upstream reservoir depth as above; the change in 
reservoir depth will be approximately given by (57). 

The results of determining internal hydraulic jumps by the use of the energy and 
continuity equations described above clearly show that only one conjugate subcritical 
flow can exist for a given supercritical flow and that, if the volume flow rates per unit 
width are sufficiently high, no conjugate state exists. This agrees with the results of 
Mehrotra & Kelly (1973) and Mehrotra (1973~) .  The actual limiting values of the 
volume flow rates per unit width for which internal hydraulic jumps no longer exist 
can now also be determined, and are just the maximum volume flow rates per unit 
width for which subcritical flows no longer exist. 

Since variations of bottom height and width affect two-layer flows in very different 
ways, it is not surprising that there are many combinations of these two controls 
which cannot be matched by a jump that does not transfer momentum and/or mass 
from one layer to the other. If the matching requires the transfer of momentum from 
one layer to the other, the region in which the transfer occurs will be called a shear 
region as shown in figure 4 (9). The matching of two flows may require a combination 
of a shear region followed by a classical internal hydraulic jump. 
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9. Conclusion 
The hydraulics of two-layer flows can be quite complicated. However, some 

simplification comes from noting that two-layer flows behave in either of two 
qualitatively different ways depending on whether coupling between the layers is 
weak or strong. 

Flows for which coupling between layers is weak. The internal Froude number of one 
of the layers is then always small and the dynamics of the interface is dominated by 
the other active layer. Inspection of the solutions for two-layer flows through a 
contraction (figure 3a,b) ,  and over a sill (figure lla,b), reveals that the dynamics 
are dominated by one active layer if the non-dimensional volume flow rate per unit 
width at the narrowest of highest section is less than w 70% of the value given 
by (31). When this value is exceeded the flows are strongly coupled. 

This first regime with one active layer is clearly seen in figure 9 (a, b) and 10 (a, b). 
In these figures interface heights are shown, using both the results from a full 
two-layer flow treatment (the solid branched lines) and from a single-layer treatment 
in which the dynamics of the assumed passive layer are ignored (the dashed lines). 
The full two-layer results are correctly predicted by a single-active-layer model until 
x 70 % of the maximum non-dimensional volume flow rate for which critical solutions 
exist (31). The qualitative behaviour as one active and one passive layer is maintained 
until the two layers become strongly coupled. 

Once the active layer has been established the computation of the dynamics of the 
active layer can proceed as for normal free-surface flows, except that the internal 
Froude number must be used in place of the external Froude number. The 
computation of internal hydraulic jumps or drops is now also simplified since the 
computation proceeds as for a single layer with a free surface except for the 
substitution of the internal Froude number. Some rules will now be discussed for ease 
in recognition of which layer will be active and which will be passive. 

Controls which employ variations of only either the bottom or the top bounding 
surface can control the internal dynamics of only the layer that is directly contacted 
by the bounding-surface variation. For example, a sill can only control the bottom 
layer and hence the bottom layer is the dynamically active layer. An inverted sill, 
such as was used in the experiments here, controls the upper layer. It must be 
emphasized that this rule applies only to controls which are not used to control the 
free surface, for then the maximum-volume-flow-rate criterion of (31) will be exceeded 
and the resulting internal dynamics are a special case of the regime in which coupling 
between the layers is strong. 

If the internal control has no obvious bias, as for example if the control is a 
contraction, then the active layer is determined by the matching requirements 
downstream. The determination of the active layer for the contraction is particularly 
simple: the faster-moving layer downstream can only qualify as the active layer 
upstream. It is, of course, possible that neither layer will be active, in which case the 
internal control is flooded and the flow is everywhere internally subcritical in the 
neighbourhood of the control. 

Flows for which coupling between the two layers is strong. This regime occurs whenever 
the volume flow rates are sufficiently high at the control section, as determined by 
(31), that internally critical flows can no longer exist there. This regime will always 
occur if the control is used to control the level of the free surface. 

For this regime, with the layers flowing in the same direction, the interfacial 
dynamics upstream of a contraction are particularly simple: there is no longer any 
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significant internal dynamics. The computation of the upstream flow velocities, which 
are approximately equal for the two layers, can be computed from the continuity 
equations alone. In the expanding portion of the contraction the flow diverges from 
this uniform upstream state. The determination of which way the flow diverges, or 
which layer is accelerated in the divergence section, depends on matching requirements 
downstream. The layer that is accelerated is the layer that is eventually also the faster 
layer downstream. The computation of the divergent flow requires the full two-layer 
solutions since the flow was initially strongly coupled. 

The flow upstream of a free-surface overflow is a special case of this regime. Near 
the crest of the overflow the flow is internally very supercritical, since it is critical 
with respect to the free-surface dynamics at  the crest. Near the crest the internal 
dynamics are strongly coupled, yet upstream the coupling between the layers will 
be weak if the channel is sufficiently deep, as specified by the criteria for the first 
regime already discussed. 

In  this paper a new treatment of the internal hydraulics of two-layer flows has been 
presented, in which the flows are parametrized in terms of the internal Froude 
numbers for each layer. This has allowed presentation of all the possible flows for two 
layers through contractions and over sills for selected values of the flow ratio qr. 
(Solutions for other values of qr can be computed using the equations given. See 
also Armi 1975). The effects of a sill on a two-layer flow are quite different from those 
of a contraction, since the sill only directly contacts the bottom layer and the upper 
layer’s response is indirect. In contrast, the contraction directly contacts both layers. 

With parametrization in terms of the internal Froude numbers and presentation 
of flow solutions as curves in the Froude-number plane, the conditions for critical 
flow, which define all of the essential characteristics of the internal hydraulics, 
becomes a straight line separating the plane into subcritical and supercritical regions. 
This has allowed the solutions to be easily interpreted and shows clearly the 
location of controls, including virtual controls, multiple solutions, matching 
conditions and weak internal hydraulic jumps. 

For a contraction, specification of the flow rate alone does not lead to a single unique 
solution. In the general case, with control at the narrowest section of a contraction, 
there a,re two distinct solutions, specification of which is actually observed, determined 
by downstream matching requirements. Laboratory experiments of two-layer flows 
through contractions confirm the existence of these two solutions. In contrast to 
free-surface flows, two-layer flows can be internally critical at other than the 
narrowest section of a control. For the flow upstream of the narrowest section of a 
contraction, with internally supercritical conditions at the narrowest section, a 
particularly simple flow is found in which there is no longer any significant interfacial 
dynamics. In  the divergent section of the contraction, downstream, this flow remains 
internally supercritical, causing one of the layers to be rapidly accelerated with a 
resting instability at the interface. 

We have attempted to provide a generalized treatment of two-layer hydraulics. 
However, we have limited the treatment to flows for which the interface remains 
stable. Certain phenomena are effectively ignored, for example supercritical jets and 
the unstable supercritical flow that can exist downstream in the divergent section 
of a contraction with a virtual control discussed in §§5 and 6. Our primary interest 
here has been in controlled flows. 
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author’s Ph.D. thesis. Financial support was provided by the U.S. Geological Survey 
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Gilles Corcos, Hugo Fisher, David Farmer, Greg Lawrence, and two J.F.M. reviewers 
(David Wilkinson plus an anonymous one) for many helpful comments on early 
versions of the manuscript. 

Appendix A. Equations and solutions 
Solutions are derived from 

CU, = Of,. 

This is a quasi-linear differential equation relating derivatives of the dependent 
variables u, to the derivatives of the independent topographic variablesf,. For the 
cases of a single layer with a free surface and two layers with a solid upper surface 
the coefficients are : 

single layer with a free surface 

two layers with a solid upper surface [" 0 9 9  uz .", ; '1 
c =  y1  0 , 

0 Yz 0 uz 0 
0 0 1 1 0  

For each of the above ut, yr,  pc, qr are respectively the layer velocity, thickness, 
density, and volume flow rate. Subscript 1 will always refer to the upper layer and 
subscript 2 the lower layer; for single-layer flows no subscript is used. 

Characteristic velocities are given by 

det (C-A/)  = 0. 

A = u f  (gyp.  

(A 2) 

For a single layer with a free surface 

(A 3) 

For two layers with a solid upper surface 

and 
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Real internal characteristics only exist if 

T(U1 -U2l2 < 1. 
A?/, +Y2) 

Using definitions of Froude number (2), internal Froude numbers, and composite 
Froude number (5 ) ,  the differential solutions to (A 1 )  for the steady flows are as 
follows : 

single layer with a free surface 

Appendix B. Symbols and definitions 
subscript i = 1 
subscript i = 2 
subscript ext 
subscript int 
b 
b‘ = b/bo 
b0 

F = u2/gy 
e = Wg’Yi 
c2 = r q + q  
c2 = q + l q - ( l - r ) q E  

upper layer 
lower layer 
external or free surface 
internal 
width 
non-dimensional width 
width at some reference 
external Froude number 
internal Froude number 
internal composite Froude number 
composite Froude number for two layer flows with free 

gravitational acceleration 
reduced gravitational acceleration 
total energy or head 
height above reference 
non-dimensional height 
pressure at upper bounding surface 
volume flow rate 
non-dimensional volume flow rate 

surface 
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q;/b’( 1 - h’); non-dimensional volume flow rate unit width 

ratio of volume flow rates 
density ratio 
convection velocity 
average velocity of layer 
downstream distance 
reservoir layer thickness 
non-dimensional reservior layer thickness 
layer thickness 
non-dimensional layer thickness 
energy distribution coefficient 
characteristic velocity 
layer density 

(for contraction solutions h’ = 0, for weir solutions b‘ = 1) 
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F~GURE 4. (a) Top view of experimental flume showing the placement of the false walls which formed 
the contraction section. (b) Overall view of flow through a contraction with downstream condition the 
combination inverted bump and the overflow weir. Flow is always from right to left. Horizontal scale is 
in inches (2.5 cm). For clarity, the inverted bump and free surface have been enhanced with solid black 
lines. (c) View of flow through a contraction with downstream condition the combination inverted 
bump and the overflow wier. An internal hydraulic jump is located at the downstream end of the 
contraction where the internally supercritical flow is conjugate to the subcritical flow upstream of the 
inverted bump. (d) View of flow through a contraction with a free overflow downstream. 

(Facing p. 58) 
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FIGURE 4. (e) Internal bore which moves upstream immediately after removal of the inverted bump. 
(j Gradual transition from figure 4 (c) t o  figure 4 (d) after removal of inverted bump. (g) Top view of 
shear region looking downstream from end of contraction showing interfacial waves. 

FIGURE 6. View of convergent and divergent region of the contraction for a two-layer flow with a 
virtual control upstream of the narrowest section. Note the level interface associated with the no- 
shear virtually controlled solution in the convergent section and the entirely internally supercritical 
solution in the divergent section. 




